Molecular Self-Assembly in Alcohol-Water Solutions

Jackson Waller
Physics & Mathematics
North Carolina State University

Mentor: Antonio Faraone, NCNR

The Problem

- Simplest amphiphile
- Low entropy in water methanol (CH₃OH) solutions¹

¹ H.S. Frank, M.W. Evans, J. Chem. Phys. 13 (1945) 507

Goals

- Confirm existence of clusters¹
- Investigate temperature dependence of formation
- Investigate cluster dynamics (diffusion, rotation, lifetime)

Possible Methanol Cluster

¹L. Dougan, J. Crain, J.L. Finney, A.K. Soper, Phys. Chem. Chem. Phys. 12 (2010), 10221

Methods – Neutron Scattering

(QENS)

- Records probability of momentum transfer (Q) and energy transfer (E) between neutrons and sample
- Measures structure and dynamics at atomic length scales ($\approx 1 \text{Å} = 10^{-10} \text{m}$)

Methods – QENS

- Scatter from nucleus
- Distinguish between isotopes
- Appropriate resolution
 ≈1Å length scale
 - ≈10 ps to ≈10 ns time scale

Methods – Why QENS?

- Contrast Matching
 - Replacing hydrogen (H) with deuterium (D) allows us to choose which particle to look at
- Coherent vs Incoherent Scattering
 - Coherent: multiple particles
 - Incoherent: single particles
 - Looking at clusters means focusing on coherent data

Atom	Coherent	Incoherent
Hydrogen	1.76	80.3
Deuterium	5.59	2.05
Carbon	5.56	0.0
Oxygen	4.23	0.0

Methods - Subtraction

- $CD_3OH/H_2O + CH_3OD/D_2O (CH_3OH/H_2O + CD_3OD/D_2O)$
 - 6 $(b_D b_H)^2 S(H_M H_W)(1 x_M)x_M 3 (b_D b_H)^2 S(H_M H_{MH})x_M^2$
- Cancel incoherent signal
- Show distance correlations between methyl groups (H_M) and hydroxyl groups (H_{MH}, H_W)

Instruments

- Structure: Measure S(Q)
 - Triple-Axis Spectrometer (SPINS)
 - Small-Angle Neutron Scattering (SANS)
- Dynamics: Measure S(Q, E)
 - Neutron Spin-Echo
 - Disk ChopperSpectrometer (DCS)

DCS

SANS

Instruments

Spin-Echo

SPINS

Results - Structure

- Subtracted signal indicates structuring (not flat)
- Preliminary analysis suggests a characteristic size $R \approx 3.5 \text{Å}$
- More rigorous analysis and interpretation are underway.

Results – Reproducibility

- Challenging experiment, small signal
 - However, results are consistent between different instruments

Results – Dynamics

Subtraction can be extended to dynamics

• Fit with a Lorentzian

$$S(Q, E) = A \frac{1}{\pi} \frac{\frac{\Gamma}{2}}{E^2 + \left(\frac{\Gamma}{2}\right)^2} \otimes \text{Res} + \text{bkg}$$

- Width gives a timescale of motion
- Faster motion gives a broader curve

Results – Dynamics

• NSE works in the time domain measuring I(Q,t)

• Fit with an exponential decay

$$I(Q,t) = A \exp\left(\frac{-t}{\tau}\right)$$

 Decay rate gives a timescale of motion

Results – Diffusive Dynamics

Dynamics measured with the subtraction method differ from the single particle dynamics

$$D = (6.51 \times 10^{-2} \pm 0.39 \times 10^{-2}) m^2 / s$$

Results – Activation Energy

Conclusion

- Evidence of structuring (Clusters?)
- Successful measurement of collective (diffusive) dynamics
- Activation energy for this process
- Work in progress:
 - Interpretation
 - Comparison with single particle

Acknowledgements

- Collaborators
 - Antonio Faraone (Mentor)
 - Michihiro Nagao (NSE)
 - Chris Bertrand
- NCNR
 - Julie Borchers (SURF Director)
 - Kathryn Krycka (SPINS)
 - Leland Harriger (SPINS)
 - John Copley (DCS)
 - Yun Liu (SANS)
 - Juscelino Leao (Sample Env)

